Srs33.ru

Авто аксессуары
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

2 Схемы

Автомобильное мощное зарядное устройство на 12V 5-10-15A

После очень морозной зимы пришел к выводу, что в гараже нет приличного зарядного выпрямителя. Наличие какого-то ветхого промышленного зарядного устройства не в счёт — оно с трудом дотягивало до 3-х ампер, в то время как микроавтобусы и другая автотехника размерами побольше седана требует иногда токи до 10-15 ампер (особенно если подзарядить нужно АКБ очень быстро, перед скорым выездом на смену). Большой ток безусловно может пригодиться, когда нужно быстро запустить автомобиль с разряженной батареей, не глядя на сохранение ее срока службы.

Автомобильное мощное зарядное устройство на 12V 5-10-15A

В общем чтоб не платить лишнего и не покупать «китайца в мешке», решено было сделать такое мощное ЗУ своими руками. В наличии был трансформатор 3х12 В на 300 Вт, ну и ещё пришлось покупать всякие мелкие детали для схемы.

Автомобильное мощное зарядное устройство на 12V 5-10-15A

Нет, микросхемами и контроллерами тут не пахнет. Конструкция в предположениях должна была быть как можно более простой, чтобы обучение не было необходимым для обслуживания схемы другими людьми, а любые дефекты были легко обнаружены.

Работа зарядного устройства

Основной функцией, которую выполняет схема, является регулирование зарядного тока. Регулировка выполняется методом, аналогичным фазовому регулированию, применяемому при управлении тиристором или симистором, но слегка измененным — инвертированным.

В нашей схеме исполнительным элементом является мощный MOSFET-транзистор. Это решение обеспечивает гораздо меньшие потери мощности и более простое и гибкое управление, чем в случае симистора.

Двухполупериодный выпрямленный сигнал поступает к исполнительному транзистору. Транзистор начинает открываться, когда уровень напряжения стремиться к нулю, благодаря чему ток плавно увеличивается — вместе с синусоидальным сигналом.

Момент закрытия транзистора определяет величину тока, поступающего на аккумулятор. Чем позже закрывается транзистор, тем большая часть сигнала будет передана, и в результате мы получим больший ток и наоборот.

Данная схема не является стабилизатором тока, она не поддерживает постоянное значение тока. Однако схема позволяет ограничить начальное значение тока, которое на самом деле является максимальным значением, поскольку во время зарядки значение тока уменьшается с увеличением заряда аккумулятора.

На последнем этапе ток зарядки может быть намного ниже, чем в начале. Это увеличивает время, необходимое для полной зарядки, но позволяет более точно определить время окончания.

Вторая важная функция системы — контролировать значение напряжения аккумулятора. Чтобы получить наиболее точный результат, измерение производится при закрытом силовом транзисторе. Такой измерительный цикл запускается один раз каждые 200 полупериодов напряжения питания, то есть каждые 2 секунды, после которого ток зарядки не протекает (в течение примерно 10 мс).

Результат измерения не искажается зарядным током, импульсами напряжения или сопротивлением проводов. Если измеренное напряжение достигло 14,4 В, зарядка прекращается, а когда напряжение падает ниже этого уровня, процесс зарядки возобновляется.

В конце зарядки такой цикл будет повторяться многократно, так как даже полностью заряженный аккумулятор не держит на своих клеммах напряжение 14,4 В. Напряжение довольно быстро падает до значения ок. 13 В, а затем оно должно стабилизироваться в районе 12,6 В.

Текущий уровень заряда отображается светодиодом. Светодиод мигает с частотой примерно каждые 2 с, с заполнением в зависимости от уровня заряда аккумулятора. При напряжении примерно до 11 В светодиод мигает с 5% заполнением, чем выше напряжение, тем дольше светодиод будет гореть в каждом цикле вплоть до 14,4, когда он будет гореть постоянно.

На практике — даже после зарядки аккумулятора светодиод может время от времени мигать, поскольку напряжение на аккумуляторе снижается. Это так называемый режим поддержки заряда аккумулятора.

Дополнительной функцией данного зарядного устройства является защита от короткого замыкания. Работа этой функции основана на том факте, что пока на выходных клеммах зарядного устройства нет напряжения (аккумулятор не подключен), зарядка не будет включена.

Читайте так же:
Акпп 4f27e регулировка тормозной ленты

Только появление напряжения минимум 9 В (от аккумулятора) приводит зарядку в действие. Состояние выходных клемм проверяется в каждом полупериоде, непосредственно перед включением транзистора, поэтому даже случайное отключение проводов от аккумулятора и их замыкание не повредят устройству (при условии, что от отключения до короткого замыкания прошло не менее 10 мс).

И последняя функция схемы — оповещение о неправильной полярности подключения аккумулятора. Если аккумулятор подключен к выходным клеммам в обратном направлении, немедленно прозвучит звуковой сигнал.

Испытания подтвердили, что даже изменение полярности во время работы зарядного устройства не приведет к каким-либо повреждениям. Но для большей безопасности аккумулятор следует подключать при отключенном от сети зарядном устройстве, и при отсутствии звукового оповещения можно подать напряжение питания.

Схема зарядного устройства для автомобильного аккумулятора вместе с элементами выпрямителя показана на рисунке ниже. Транзистор Т1 со смежными элементами представляет собой детектор перехода напряжения через ноль. Однако в нашем случае мы имеем дело с двухполупериодным сигналом, то есть пульсирующим сигналом.

Зарядное устройство для автомобильного аккумулятора на Attiny25

Кроме того, когда аккумулятор подключен через диод, содержащийся в структуре MOSFET транзистора T3, на пульсирующую форму сигнала также накладывается постоянное напряжение от аккумулятора.

По сути, транзистор T1 является детектором момента, когда напряжение пульсирующей формы выходит за пределы значения напряжения аккумулятора. Именно с этого момента ток может течь в сторону аккумулятора — заряжая его.

Транзистор T2 с обвеской работает как драйвер силового транзистора T3. Положительные импульсы с напряжением 5 В с выхода микроконтроллера открывают исполнительный транзистор Т3, а резистор R10 закрывает его после импульса.

Слишком высокая амплитуда управляющего сигнала может привести к повреждению схемы затвора MOSFET транзистора, поэтому в схему добавлен стабилитрон D1.

Управляющие импульсы синхронизируются с сигналом от нашего детектора импульсов. Чем дольше длится импульс, тем большая часть сигнала пройдет, и в результате будет течь больший ток.

Другими элементами устройства являются:

  • Блок питания, построенный на основе стабилизатора напряжения IC2 (78L05);
  • Микроконтроллер IC1 (Attiny25) с управляющей программой;
  • Схема сигнализации обратной полярности аккумулятора — элементы R15, BUZZ и D3 (1N4007);
  • Потенциометр на 50 кОм для регулировки тока;
  • Сигнальный светодиод ;
  • Блок измерения напряжения — регулируемый делитель напряжения на резисторах R12 и R13.

Схема, прерывающая и возобновляющая процесс зарядки в автоматическом режиме

На рисунке, расположенном ниже — изображение схемы, способной обеспечивать выключение в автоматическом режиме процесса зарядки по достижению на клеммах аккумулятора напряжения заданной величины. Если батарея 12-вольтовая, устройство будет выдавать от 14,3 В до 14,4 В. Такая настройка не позволяет перезаряжать аккумулятор и обеспечивает его защиту от порчи пластин и выкипания в отдельных банках электролита.

рисунок 3 рисунок 3

Микросхемой DD1 осуществляется контроль за величиной напряжения заряжаемого аккумулятора и управление релейным каскадом, собранным с использованием транзистора VT1 и 24-вольтового реле К1. Выбор реле с такой обмоткой позволяет не опасаться произвольного его включения в случае естественного снижения уровня напряжения аккумулятора после того, как будет произведено отключение зарядного тока.

Как следует из схемы простого зарядного устройства для автомобильного аккумулятора, питание DD1 получается непосредственно с зажимов аккумулятора, для чего используются специальные тонкие провода. Сделано это для того, чтобы было исключено влияние от проводов, соединяющих с аккумулятором зарядное устройство. Для настройки схемы к ней необходимо подключить аккумулятор, имеющий полную зарядку, и использовать цифровой вольтметр. На место R1 (постоянного резистора) следует установить регулируемый резистор номиналом 470 кОм. Он ставится при настройке в положение с минимальным сопротивлением.

О подключении аккумулятора должен информировать светодиод VD1, что говорит о готовности схемы к работе. После подключения сети 220 В путём кратковременного замыкания SА1 включается режим зарядки. Дождавшись момента, когда уровень напряжения достигнет предела в 14,4 В надо потихоньку выводить резистор R1 до момента прекращения зарядки. Не трогая резистор R1, вновь запускается зарядка. Делается это для того, чтобы убедиться в отключении схемы при заданном напряжении. Произведя замер сопротивления R1, следует подобрать постоянное сопротивление с таким номиналом и заменить им переменное. После этого надо вновь удостовериться, что отключение происходит в заданном режиме.

Читайте так же:
Вибрационный насос регулировка обратного клапана

Схемы самодельных ЗУ для автомобильных АКБ на TL494

Схемы самодельных ЗУ для автомобильных АКБ на TL494Ранее мы опубликовали схемы зарядных устройств для автомобильного аккумулятора.

Сегодня рассмотрим несколько схем с использованием широко распространённой специализированной мс TL494.

Зарядное устройство, рассматриваемое ниже собрано по схеме ключевого стабилизатора тока с узлом контроля достигнутого напряжения на аккумуляторе для обеспечения его отключения по окончании зарядки.

Для управления ключевым транзистором используется микросхема TL494 (KIA494, KA7500B, К1114УЕ4). Её можно часто встретить в компьютерных БП. Устройство обеспечивает регулировку тока заряда в пределах 1 … 6 А (10А max) и выходного напряжения 2 … 20 В.

Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 — VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 200 … 400 см2. Наиболее важным элементом в схеме является дроссель L1. От качества его изготовления зависит КПД схемы.

Так как в процессе работы происходит намагничивание магнитопровода постоянным током — из-за насыщения индуктивность его сильно зависит от протекающего тока. С целью уменьшения влияния подмагничивания на индуктивность, предпочтительней использовать альсиферовые магнитопроводы с малой магнитной проницаемостью, насыщение которых происходит при значительно больших магнитных полях, чем у ферритов.

В качестве сердечника можно использовать импульсный трансформатор от блока питания телевизоров 3УСЦТ или аналогичный. Очень важно, чтобы магнитопровод имел щелевой зазор примерно 0,2 … 1,0 мм для предотвращения насыщения при больших токах. Количество витков зависит от конкретного магнитопровода и может быть в пределах 15 … 100 витков провода ПЭВ-2 2,0 мм. Если количество витков избыточно, то при работе схемы в режиме номинальной нагрузки будет слышен негромкий свистящий звук. Как правило, свистящий звук бывает только при средних токах, а при большой нагрузке индуктивность дросселя за счёт подмагничивания сердечника падает и свист прекращается. Если свистящий звук прекращается при небольших токах и при дальнейшем увеличении тока нагрузки резко начинает греться выходной транзистор, значит площадь сердечника магнитопровода недостаточна для работы на выбранной частоте генерации — необходимо увеличить частоту работы микросхемы подбором резистора R4 или конденсатора C3 или установить дроссель большего типоразмера.

При отсутствии силового транзистора структуры p-n-p в схеме можно использовать мощные транзисторы структуры n-p-n, как показано на рисунке, ниже.

В качестве диода VD5 перед дросселем L1 можно использовать любые доступные диоды с барьером Шоттки, рассчитанными на ток не менее 10А и напряжение 50В. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например KBPC3506, MP3508 или подобные. Сопротивление шунта в схеме желательно подогнать под требуемое. Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы.

Настройка схемы зарядного устройства

В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока. Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы.

Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2 … 100 кОм.

Читайте так же:
Регулировка сцепления трактора дт75

Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В.

Монтаж ЗУ

Микросхема установлена на небольшой печатной плате 45 х 40 мм, остальные элементы схемы установлены на основание устройства и радиатор. Монтажная схема подключения печатной платы приведена на рисунке справа. В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Если достаточно выходного напряжения 15 В и тока 6А, то достаточно силового трансформатора мощностью 100 Вт. Площадь радиатора также можно уменьшить до 100 .. 200 см2.

Это зарядное устройство можно использовать также и как лабораторный блок питания с регулируемым ограничением выходного тока. При исправных элементах схема начинает работать сразу.

Схема ЗУ на мс TL494 с нормализацией напряжения шунта

Ниже, представлен вариант схемы зарядного устройства для автомобильных аккумуляторов, который, несмотря на большую сложность, проще в настройке благодаря использованию операционного усилителя для нормализации напряжения токоизмерительного шунта.

В этой схеме в качестве шунта R13 можно использовать практически любой проволочный резистор сопротивлением 0,01 … 0,1 Ом и мощностью 1 … 5 Вт. Требуемое для нормальной регулировки тока в нагрузке напряжение 0 … 0,6 В на выводе 1 микросхемы DA1 достигается соотношением сопротивлений резисторов R9 и R11. Сопротивления резисторов R11 и R12 должны быть одинаковыми и быть в пределах 0,5 … 100 кОм. Сопротивление резистора R9 подсчитывают по формуле: R9 (Ом)= 0,1* I вых.max (A) * R11 (Ом) / I вых.max (А) * R13 (Ом). Переменный резистор R2 может быть любым подходящим, с сопротивлением 1 … 100 кОм. После выбора R2 рассчитывают требуемое значение сопротивления резистора R4, которое определяется по формуле: R4(кОм) = R2 (кОм) * (5 В- 0,1 * I вых. max (A)) / 0,1 * I вых. max (A). Переменный резистор R14 также может быть любым подходящим с сопротивлением 1 … 100 кОм. Сопротивление резистора R15 определяет верхнюю границу регулировки выходного напряжения. Номинал этого резистора должен быть таким, чтобы при максимальном выходном напряжении на движке резистора, в нижнем по схеме положении, напряжение составляло 5,00В. На рисунке показаны номиналы для максимального выходного тока 6А и максимального напряжения 15 В, но предельные значения этих параметров легко пересчитать согласно выше приведённым формулам.

Конструкция и монтаж

Конструктивно основная часть схемы выполнена на печатной плате размером 45 х 58 мм. Остальные элементы: силовой трансформатор, диодный мост VD2, транзистор VT1, диод VD5, дроссель Др1, электролитические конденсаторы С2, С7, переменные резисторы и предохранители размещены методом объёмного монтажа в корпусе зарядного устройства. Такой подход позволил использовать в схеме разные по габаритам элементы и был вызван необходимостью тиражирования конструкции.

Требования к элементной базе описаны выше. Правильно собранная схема начинает работать сразу и, практически, не требует наладки.

Эта схема также, как и предыдущая, может использоваться не только в качестве зарядного устройства , но и лабораторного блока питания с регулируемым ограничением выходного тока.

Бесконтактный многорежимный выключатель для светодиодной ленты: тест и обзор

Обзор посвящен бесконтактному выключателю для светодиодных лент и других источников света; хотя он может быть использован и для управления любыми устройствами (напрямую или через дополнительную обвязку, в зависимости от требуемого питания).

В обзоре будет рассмотрена конструкция бесконтактного выключателя, показаны осциллограммы работы устройства и продемонстрированы режимы его работы (их может быть шесть!).

Устройство поставляется в бескорпусном виде. И, хотя оно рассчитано на низковольтное питание (до 24 В), для обеспечения техники безопасности настоятельно рекомендуется использовать его в корпусе или кожухе, исключающем случайное прикосновение к токопроводящим частям.

Читайте так же:
Регулировка сход развал портер

Содержание

Технические характеристики, конструкция и схемотехника бесконтактного выключателя

Основные технические характеристики приведены в следующей таблице:

Максимальная мощность нагрузки120 Вт
Максимальный ток нагрузки5 А
Собственный потребляемый токНе более 10 мА
Принцип действияИнфракрасное излучение и обнаружение отражения
Дальность действия10 — 80 мм (рекомендуется до 50 мм)
Напряжение питания *5 — 24 В (постоянный ток)
Габариты50 * 12 * 7.9 мм

* Примечание. Напряжение питания рекомендуется устанавливать не менее 7 В для устойчивой работы линейного стабилизатора на 5 В на плате выключателя.

Выключатель — очень небольшой, по габаритам он вполне помещается на любом пальце мужской руки, кроме мизинца.

На плате имеется два входных контакта, два выходных и четыре контактных площадки для управления режимами (обозначены буквами A — D).

Так выглядит плата в наклонно-диагональном ракурсе:

В центре платы в пластиковом обрамлении находятся приёмный и передающий инфракрасные светодиоды.

Светодиод в прозрачном корпусе — передающий (излучающий), в чёрном корпусе — приёмный.

Внизу под обрамлением светодиодов находится маленький SMD-светодиод, индицирующий неярким синим светом факт включения платы (но не напряжения на нагрузке!). Интересно, что при обнаружении поднесения руки он гаснет; а если руку убрать — снова зажигается (независимо от режима выключателя).

Вид с противоположной диагонали:

При обычном освещении оказалось затруднительно прочесть маркировку элементов.

Но, если дополнительно подсветить достаточно мощным фонариком, то маркировка становится хорошо различима (по крайней мере там, где она есть):

Итак, главная управляющая микросхема с 8-ю выводами пожелала остаться анонимной. 🙂

Слева от неё расположена микросхема SE8250. Это — линейный стабилизатор на 5 В.

В datasheet на микросхему указано, что напряжение на её входе должно быть, по крайней мере, на 2 В выше выходного. По этой причине не рекомендуется питать плату напряжением ниже 7 В.

На правой стороне платы расположен довольно крупный транзистор NCE3080K (MOSFET). Именно он и управляет включением или выключением нагрузки.

Нагрузку этот транзистор подключает и отключает не со стороны положительного напряжения, а со стороны земли. Это может быть важным, если предполагается подключение какой-то более навороченной схемы, чем просто светодиодная лента.

Максимальный импульсный ток этого транзистора — 80 Ампер! Но, разумеется, включать нагрузку с таким током не рекомендуется: с платы могут испариться печатные проводники. 🙂

Теперь, для завершения картины, посмотрим на обратную сторону платы:

Проследить путь дорожек металлизации под белым лаком сложно, но можно, если вдруг возникнет такая необходимость.

Принцип действия этого выключателя — точно такой же, как и в датчиках приближения смартфонов: по обратному отражению инфракрасного излучения.

Но, чтобы датчик не срабатывал от посторонних источников света, инфракрасное излучение, исходящее от передающего светодиода, промодулировано.

На последующих осциллограммах, снятых на контактах излучающего ИК-светодиода с помощью осциллографа Fnirsi-1013D, видны характерные особенности модуляции.

На следующей картинке — осциллограмма напряжения на излучающем светодиоде в мелком масштабе (5 мс / деление):

На осциллограмме видно, что излучающие импульсы идут сдвоенными пачками с периодом 50 мс (20 Гц).

Посмотрим в увеличенном виде на одну из пачек импульсов (50 мкс / деление):

Внутри каждой пачки импульсы следуют с частотой около 38 кГц. Вся эта хитрая модуляция помогает устройству выделить отраженный ИК-сигнал из внешнего светового шума.

О регулировке яркости. В случае, если яркость светодиодной линейки требуется установить не на максимальном, а на каком-либо промежуточном уровне, то диммирование осуществляется, разумеется, с помощью ШИМа.

Импульсы ШИМа следуют с высокой частотой (20.8 кГц), благодаря чему мерцание светодиодов не заметно для зрения и не вредит ему, осциллограмма:

На этой позитивной ноте перейдём к следующему разделу обзора: режимам работы бесконтактного выключателя и его испытаниям.

Читайте так же:
Триммер patriot регулировка карбюратора
Режимы работы бесконтактного выключателя и его тестирование

Режим работы выключателя задаётся перемычками между контактными площадками A — D на плате. Расстояние между площадками — небольшое, поэтому требуется аккуратность при пайке.

Выключатель запоминает ту конфигурацию, которая была на момент подачи питания. В связи с этим, если требуется конфигурацию поменять, то это надо делать при выключенном питании (иначе новая конфигурация не будет работать).

На странице продавца приведена краткая таблица с возможными конфигурациями выключателя:

Немного комментариев с более подробным описанием режимов.

1-ая конфигурация (без перемычек, т.е. по умолчанию): медленное включение и выключение света. Под медленным имеется в виду интервал около одной секунды.

2-ая конфигурация (перемычка AB): «мгновенное» включение и выключение света.

3-я конфигурация (перемычка CD): светится, только когда рука поднесена и удерживается у датчика.

4-ая конфигурация (перемычка AB+CD). Режим, обратный предыдущему: лента светится постоянно. Гаснет, только когда рука поднесена и удерживается у датчика.

5-ая конфигурация (перемычка ABC): медленное включение и выключение при поднесении руки на короткое время. При длительном удержании руки сначала идёт падение яркости, затем рост, и так циклически повторяется. Яркость фиксируется и запоминается на тот момент, когда рука была убрана.

6-ая конфигурация (перемычка BC): такой же режим, как и предыдущий, но с «мгновенным» включением и выключением по короткому поднесению руки.

Испытания бесконтактного выключателя для светодиодной ленты начались с определения рабочей дистанции включения/выключения.

Дистанция устойчивого управления всей ладонью составила 7.5 см от уровня платы, а на расстоянии 5 см уже можно было управлять одним пальцем. Это — нормально, т.к. здесь не действует принцип «больше — лучше»; для дальних дистанций есть датчики присутствия.

Собственное потребление выключателя составило 6.4 мА при напряжении питания 12 В, так что потреблением в постоянном дежурном режиме можно пренебречь.

Все шесть режимов работы выключателя подтвердились.

Увидеть, как они работают, можно на этом видео:

На видео, к сожалению, пятый режим показан не полностью: там можно не только снижать яркость, но и увеличивать.

Итоги, выводы, область применения

Рассмотренный бесконтактный выключатель показал себя надёжным и полностью функциональным устройством во всех заявленных режимах.

Заодно, кстати, в обзоре был рассмотрен принцип работы датчика приближения в смартфонах, планшетах и т.п.

Такого рода выключатель — практически вечный, если не нарушать условий эксплуатации. У него нет механических контактов, которые могли бы окислиться или быть «съеденными» искрой, которая проскакивает в обычных выключателях в моменты включения и выключения.

Тем не менее, это не значит, что его надо устанавливать везде, где попало.

В первую очередь, он будет удобен для включения и регулировки местного освещения на рабочем месте.

А наибольшую пользу он принесёт в случаях, когда руки могут быть мокрыми или загрязнёнными, и тогда лучше руками ни к чему не прикасаться. Такие ситуации часто могут встречаться на кухне или в мастерской.

Выключатель может использоваться и не обязательно для управления освещения именно руками. Он может, например, срабатывать от открытия и закрытия дверей.

Стоит выключатель очень недорого. Регулярная цена — $1.36; на распродаже 11.11 — ещё дешевле (в дальнейшем цена может меняться в любую сторону).

Купить протестированный бесконтактный выключатель купить можно на Алиэкспресс, например, у этого продавца.

Там же можно купить упрощённую версию, у которой нет управления режимами, и которая умеет только включать и выключать. Но при этом надо иметь в виду, что у неё не только нет дополнительных режимов, но и меньше допустимая мощность нагрузки (72 Вт).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector