Автоматические выключатели для защиты электродвигателей
Автоматические выключатели для защиты электродвигателей
Хит СПЕЦЦЕНА
Хит СПЕЦЦЕНА
Хит СПЕЦЦЕНА
Хит СПЕЦЦЕНА alt=»Авт. выкл. Lovato Iт.р.=20. 25А, Pдвиг.=12.5кВт» />
- Назад
- 1
Автоматы защиты электродвигателей
Частая причина выхода из строя двигателя – пропадание (обрыв) фазы: двигатель работает в несимметричном режиме, обмотки двигателя потребляют повышенный ток и перегреваются. Перегрев приводит к нарушению изоляции, межвитковым замыканиям и повреждению обмоток электродвигателя.
Автоматические выключатели, как и тепловые реле, предназначены для защиты электродвигателей от перегрузки. Кроме того, выключатели обеспечивают отключение двигателя при токах короткого замыкания или обрыве фазы.
В схеме управления и защит автоматы для защиты двигателей устанавливаются перед контактором (пускателем). При редких включениях — отключениях допустимо использовать аппарат как пусковое устройство.
Диапазон защиты
Наш складской ассортимент выключателей на токи от 0,1 до 65 ампер позволяет защитить асинхронные электродвигатели мощностью от 0,03 кВт до 30 кВт, а регулируемый тепловой расцепитель сделает защиту точной и надёжной.
Предлагаемые бренды и серии
Компания Локальные Системы предлагает автоматический выключатели и тепловые реле следующих производителей:
- EATON серий PKZM (0,1 А…63 А) и Z-MS (0,25 А…40 А)
- ABB серии MS (0,1 А…65 А)
- LOVATO серии LMR (0,1 А…32 А), распродажа
- ALLEN BRADLEY серии 140 (0,16 А…160 А), распродажа
Аксессуары
В зависимости от задач и условий эксплуатации автоматические выключатели комплектуются необходимыми аксессуарами:
Проверка и регулировка тепловых реле
Тепловые реле предназначены для защиты электродвигателей от повреждения из-за перегрузок, затянутого пуска, асимметрии фаз и заклинивания ротора.
Зачем нужно проверять тепловое реле?
Регулярная проверка теплового реле позволяет содержать механизм реле и контакты в рабочем состоянии, а при возникновении неисправностей вовремя их устранить.От надежности аппаратов защиты зависит безаварийная работа электрооборудования, поэтому важно знать, как проверить работоспособность теплового релеперед установкой в цепь питания двигателя.
Под прозрачной крышкой на передней панели расположены элементы настройки и проверки реле:
• кнопка "TEST" для имитации работы механизма реле;
• регулятор тока уставки срабатывания теплового элемента;
• кнопка "STOP" для принудительного размыкания нормально-замкнутого контакта;
• кнопка-переключатель режима повторного взвода "RESET" (автоматический Aили ручнойP);
• индикатор срабатывания реле;
• пронумерованные выводы вспомогательных контактов– 96-95 (нормально-замкнутый) и 98-97 (нормально-разомкнутый).
Способы проверки и их алгоритм
Сначала визуально проверяем плотность прилегания крышки к корпусу, состояние корпуса на отсутствие трещин, сколов, следов плавления и подгоревших пятен.
Если при визуальном осмотре не обнаружено повреждений:
1. Проверяем работоспособность теплового реле: нажимая отверткой кнопку "TEST" имитируем работуреле при перегрузке.О срабатывании механизма и переключении вспомогательных контактов сигнализирует щелчок механизма и появление красного (желтого) "флажка " в окошке индикатора. Кнопкой "RESET" возвращаем реле в исходное состояние – окошко индикатора становится прозрачным.
2. Мультиметром проверяем правильностьположения контактовдо и после срабатывания.
Как проверить тепловое реле мультиметром
Для тестирования работы контактных группможно использовать и цифровой, и аналоговый мультиметр.
Как прозвонить тепловое релецифровым мультиметром рассмотрим подробно:
1. Сначала нужно перевести мультиметр в режим прозвонки:
• подключить красный щуп в гнездо "V/Ω", черный – в гнездо "COM";
• установить переключатель напротив значка, обозначающего звук;
• соединить концы щупов – звуковой сигнал свидетельствует о правильной настройке прибора.
2. Присоединяем свободные концы щупов к выводам контактов на передней панели:
• 96-95 (нормально-замкнутый контакт NC) – услышим звуковой сигнал, значит, контакты замкнуты и пропускают ток без помех;
• 98-97 (нормально-разомкнутый NO) – отсутствие сигнала говорит о том, что контакты разомкнуты.
3. Кнопкой "TEST" вызываем срабатывание реле, прикладываем щупы мультиметра к выводам контактов, проверяем их состояние:
• 96-95 – отсутствие сигнала свидетельствует о разомкнутом состоянии нормально-замкнутого контакта (нажав кнопку "STOP", можно вернуть контакт NC в исходное состояние и снова проверить замыкание);
• 98-97 – контакт NO замкнут, слышен сигнал мультиметра.
Проверка теплового реле с полной разборкой
После долгой работы или регулярных сбоях желательно провести проверку теплового реле с полной разборкой:
• отсоединяем крышку реле от корпуса;
• осматриваем реле внутри, очищаем детали от загрязнений;
• проверяем целостность биметаллических пластин и исправность нагревательных элементов;
• осматриваем контакты, при необходимости производим чистку и регулировку;
• проверяем затяжку винтов клемм, крепления тепловых элементов и контактов;
• нажимая кнопку "TEST" убеждаемся в легкости хода контактов и отсутствие заеданий при работе механизма;
• при нажатии кнопки "STOP" проверяем срабатывание нормально-замкнутого контакта, нормально-разомкнутый при этом остается неподвижным.
Если в ходе проверки обнаружены неисправности теплового реле, например, после чистки высота контактного наклепа менее 0,5 мм, повреждены или деформированы биметаллические пластины, обнаружено выгорание материала или замыкание витков нагревательного элемента, поврежденные детали заменяют новыми.
Схема испытания тепловых реле
Для обеспечения надежного и своевременного отключения электродвигателя при перегрузке тепловое реле настраивается на специальном стенде с маломощным нагрузочным трансформатором:
1. Напряжение источника питания (220 В) подается в схему через выключатель QS.
2. Величина напряжения питания регулируется автотрансформатором TV1.
3. Через понижающий трансформатор TV2 подается напряжение на нагревательный элемент реле КК и магнитный контактор КМ.
4. Токовая нагрузка контролируется амперметром PA, подключенным через трансформатор тока TA вторичной цепи.
Настройку срабатывания теплового реле делаем методом фиктивных нагрузок:
1. Регулятор тока уставки устанавливаем в нейтральное положение.
2. Подаем напряжение в схему, устанавливаем ток нагрузки 1,5 Iном.
3. Секундомером проверяем время срабатывания – примерно 150 секунд.
4. Если за это время тепловая защита не сработала, плавно поворачиваем регулятор тока уставки до срабатывания реле.
5. Для завершения настройки проверяем срабатывание реле при других значениях нагрузочного тока, например, при 5–6 кратном превышении тока защита должна отключить нагрузку через 10 секунд.
6. После активного охлаждения по аналогичному алгоритму проверяем все нагреватели реле подачей тока на каждый отдельный элемент.
7. На корпусе реле меткой фиксируемположение регулятора.
В большинстве реле в качестве теплового элемента используется биметаллическая пластина. При нагревании проходящим током пластина изгибается в сторону металла с меньшим линейным коэффициентом расширения и свободным концом воздействует на механизм срабатывания контактов, которые отключают цепь питания электродвигателя при превышении заданной величины тока и замыкают цепь сигнализации, свидетельствующей о срабатывании тепловой защиты.
Нагрев биметаллической пластины происходит не мгновенно – реле срабатывает с некоторой задержкой времени, которая зависит от температуры окружающей среды, поэтому необходима регулировка теплового релес конкретным видом двигателя в условиях эксплуатации для исключения ложных срабатываний:
1. Определяем поправку на номинальный ток двигателя без компенсации температуры по формуле Е1 = (Iном – Iнэ)/СIнэ, где
• Iном – номинальный ток двигателя;
• Iнэ – номинальный ток нагревательного элемента;
• С – цена деления шкалы эксцентрика.
2. Определяем поправку на температуру окружающей средыпо формуле Е2 = (t – 30)/10, где t (°С) – температура воздуха.
3. Определяем суммарную поправку E = E1+E2 и переводим эксцентрик на значение суммарной поправки, округленной до целого числа.
Правильный выбор тепловых реле
Основной характеристикой теплового реле является время срабатывания в зависимости от нагрузочного тока (так называемая времятоковая характеристика).
Главный критерий – номинальный ток потребления электрооборудования. Тепловое реле должно иметь соответствующие характеристики на 20-30 % выше, что обеспечивает ее срабатывание в течение соответствующей процентной перегрузки в течение 20 минут.
Особенности теплового реле
Но, в отличие от автоматического защитного выключателя, ТР не размыкает силовые цепи питания, а разрывает цепь самоподхвата магнитного пускателя. Нормально замкнутый контакт защитного устройства действует аналогично кнопке «Стоп», и подключается последовательно с ней.
Тандем контактора и теплового реле
Поскольку тепловое реле подключается сразу же после магнитного пускателя, то нет нужды дублировать функции контактора при аварийном размыкании цепей. При таком выборе реализации защиты достигается ощутимая экономия материала для контактных силовых групп – значительно проще коммутировать небольшой ток в одной цепи управления, чем разрывать три контакта под большой токовой нагрузкой.
Тепловое реле не разрывает силовые цепи напрямую, а лишь выдает сигнал управления в случае превышения нагрузки – данную особенность следует помнить при подключении устройства.
Как правило, в тепловом реле присутствует два контакта – нормально замкнутый и нормально разомкнутый. При срабатывании устройства данные контакты одновременно меняют свое состояние.
Нормально разомкнутые и нормально замкнутые контакты
Характеристики теплового реле
Выбор ТР следует производить, сопоставляя типичные характеристики данного защитного устройства соответственно имеющейся нагрузке и условиям эксплуатации электродвигателя:
- Номинальный ток защиты;
- Предел регулировки уставки тока срабатывания;
- Напряжение силовой цепи;
- Количество и тип вспомогательных контактов управления;
- Мощность коммутации контактов управления;
- Порог срабатывания (коэффициент отношения к номинальному току)
- Чувствительность к асимметричности фаз;
- Класс отключения;
Схема подключения
В большинстве схем при подключениях теплового реле к магнитному пускателю используется нормально замкнутый контакт, который подключается последовательно с кнопкой «Стоп» пульта управления. Обозначением данного контакта является сочетание букв NC (normal connected) или НЗ (нормально замкнутый).
Схема подключения ТР к контактору в магнитном пускателе
Нормально разомкнутый контакт (NO) при данной схеме подключения может использоваться для сигнализации о срабатывании тепловой защиты электродвигателя. В более сложных автоматических схемах управления он может использоваться для инициализации аварийного алгоритма останова конвейерной цепи оборудования.
Для самостоятельного подключения теплового реле для защиты электродвигателя, не имея опыта работы с подобным оборудованием, будет правильно сначала ознакомиться с принципом работы и подключением магнитного пускателя на данном сайте.
В независимости от типа подключения электродвигателя и количества контакторов магнитного пускателя (прямой и реверсивный запуск), внедрение теплового реле в схему является достаточно простым. Оно устанавливается после контакторов перед электродвигателем, а размыкающийся (нормально замкнутый) контакт подключается последовательно с кнопкой «Стоп».
Тепловое реле в схеме реверсивного подключения контакторов
Элементы подключения, управления и настройки ТР
По ГОСТ клеммы контактов управления имеют обозначение 95-96 (нормально замкнутый) и 97-98 (нормально разомкнутый).
На данном рисунке показана схема теплового реле с обозначением выводов и элементов управления. Кнопка «Тестирование служит для проверки работоспособности механизма.
Кнопка «Стоп» служит для ручного выключения устройства защиты.
Функция «Повторный взвод» позволяет заново запустить электродвигатель после срабатывания защиты. Многие ТР поддерживают два варианта – автоматический (возвращение в исходное состояние происходит после остывания биметаллических пластин) и ручной взвод, требующий непосредственного действия оператора для нажатия соответствующей кнопки.
Управление повторным взводом
Уставка тока срабатывания позволяет сделать выбор значения перегрузки, при котором реле отключит катушку контактора, который обесточит электродвигатель.
Регулировка уставки срабатывания относительно метки
При выборе устройства защиты нужно помнить, что по аналогии с автоматическим выключателем у тепловых реле также имеется времятоковая характеристика. То есть, при превышении уставленного тока на некоторое значение, отключение произойдет не сразу, а по истечению некоего времени. Быстрота срабатывания будет зависеть от кратности превышения тока уставки.
Графики времятоковой характеристики
Разные графики соответствуют характеру нагрузки, количеству фаз и температурному режиму.
Как видно из графиков, при двукратном превышении нагрузки может пройти больше минуты времени, прежде, чем защита сработает. Если же выбрать ТР недостаточно мощным, то двигатель может не успеть разогнаться при многократном стартовом превышении уставки тока перегрузки.
Также у некоторых тепловых реле имеется флажок срабатывания защиты.
Защитное закрывающееся стекло служит одновременно для нанесения маркировки и защиты настроек при помощи пломбирования,
Защита настроек и маркировка
Устройство и виды
Существует несколько разновидностей тепловых реле, каждая из которых имеет свои особенности конструкции и применение.
РТЛ – 3-фазные тепловые реле, которые служат для обеспечения защиты электромоторов от перегрузки, заклинивания ротора, затяжного пуска, перекоса фаз. Реле фиксируются на клеммы пускателя ПМЛ. Реле также может функционировать как самостоятельное устройство защиты с клеммами КРЛ.
РТТ – реле трехфазное, служит для обеспечения защиты короткозамкнутых моторов от токовой перегрузки, затяжного пуска, заклинивания двигателя и других подобных аварийных режимов. Конструкция реле этого вида позволяет закрепить его на корпус магнитного пускателя марки ПМЕ и ПМА, либо в виде самостоятельного прибора на специально предназначенной панели.
РТИ – такие трехфазные реле предохраняют электрический двигатель от перегрузки, фазного перекоса, заклинивания и тому подобных тяжелых режимов. Крепление такого вида реле осуществляется на корпус пускателей КМИ и КМТ.
ТРН – 2-фазный вариант теплового реле, осуществляет контроль запуска и работы устройств, оснащен механизмом ручного возврата контактов и исходное состояние, температура внешней среды не влияет на функционирование реле.
Твердотельное реле на три фазы, в котором отсутствуют подвижные элементы, невосприимчиво к внешней среде, используется в местах с наличием опасности взрыва, обеспечивает защиту от таких же факторов, как и вышеописанные конструкции реле.
РТК – температура контролируется с помощью щупа, находящегося в корпусе электроустройства. Тепловое реле осуществляет контроль одного параметра.
РТЭ – это термореле плавления сплава, состоящее из проводника, выполненного из специального сплава, который способен плавиться при определенной температуре, разрывая тем самым электрическую цепь. Это реле встраивается в конструкцию устройства.
Принцип действия на примере конструкции реле РТТ-32П
Это реле предназначено для защиты электрических цепей от токов перегрузки. Реле третьей величины на номинальный ток 160 ампер.
Исполнение для комплектации с пускателями ПМА-4000, 5000, 6000 с переключающим контактом, пониженной инерционности. Предельно допустимый номинальный ток несрабатывания 100 ампер.
Реле такой конструкции работают следующим образом. Силовые клеммы включены последовательно в цепь каждой фазы. Токоведущие шины рассчитаны на длительный номинальный ток несрабатывания. При прохождении тока перегрузки по одной из фаз повышается температура шины и передается через нагревательные пластины к биметаллической пластине, которая нагреваясь, изгибается, воздействуя на планку толкателя.
Время срабатывания при шестикратном номинальном токе несрабатывания от 6 до 14 секунд. При этом необходимый ход планки от 1,5 до 2 мм. Планка-толкатель воздействует в свою очередь на рычаг сброса защелки. Защелка, поворачиваясь, освобождает подвижные контакты, которые под действием собственной пружины переключаются, размыкая цепь управления и замыкая цепь сигнализации.
После устранения причины повышенного тока можно повторно включить реле с помощью кнопки и возвратного рычага. При этом подвижные контакты зафиксируются подпружиненной защелкой.
Можно изменить номинальный ток несрабатывания в большую или меньшую сторону на 15 ампер. При этом эксцентриком смещается ось рычага сброса защелки, тем самым увеличивая или уменьшая время срабатывания реле.
Особенности теплового реле
В отличие от электрического автомата тепловое реле не разрывает силовые цепи, а только отключает цепь управления магнитного пускателя. Нормально включенный контакт теплового реле работает подобно кнопке «стоп» пускателя, и соединяется с ней по последовательной схеме.
В конструкции термореле нет необходимости повторять функции силовых контактов при его срабатывании, так как реле подключается непосредственно к магнитному пускателю. При таком исполнении схемы достигается значительная экономия материалов для силовых групп контактов. Намного проще подключать малый ток в управляющей цепи, чем отключать три фазы с большим силовым током.
При подключении необходимо знать, что тепловые реле не расцепляют силовую цепь непосредственно, а только подают сигнал на ее отключение при аварийном режиме. Чаще всего в термореле имеется две пары контактов. Одни из них постоянно замкнутые, а другие нормально разомкнутые. При сработке термореле, эти контакты меняются между собой состоянием, то есть, первые контакты становятся разомкнутыми, а вторые замыкаются.
Характеристики реле
Тепловые реле следует выбирать, путем выбора характеристик этого устройства по нагрузке и условиям работы электромотора или другого потребителя электроэнергии:
- Номинальный ток.
- Граница регулировки тока сработки.
- Силовое напряжение.
- Число и вид дополнительных контактов управления.
- Мощность при включении управляющих контактов.
- Граница срабатывания.
- Чувствительность к перекосу фаз.
- Класс отключения.
Схема подключения
Во многих схемах при подключении термореле к пускателю применяется постоянно замкнутый контакт, работающий последовательно с кнопкой «стоп» на управляющем пульте. Этот контакт маркируется буквами NC или НЗ.
Нормально включенный контакт при такой схеме может применяться для подключения сигнализации о действии защиты электромотора. В более серьезных усложненных схемах автоматического управления этот контакт может применяться для действия алгоритма аварийной остановки цепи питания.
Независимо от типа подключения электромотора и числа контакторов пускателя, подключение термореле в схему осуществляется простым методом. Оно размещается после контакторов перед электрическим двигателем, а размыкающийся (постоянно замкнутый) включается по последовательной схеме с кнопкой «стоп».
Достоинства и недостатки
Из преимуществ термореле можно назвать:
- Малые размеры.
- Небольшая масса.
- Низкая стоимость.
- Простая конструкция.
- Долговечная работа.
Недостатками тепловых реле отмечаются:
- Необходимость периодической настройки.
- Периодическая проверка.
Как выбрать тепловые реле
При выборе и установке термореле необходимо учитывать, где оно будет применяться, и наличие функций:
- Тепловое 1-фазное реле тока с автосбросом возвратится в исходное положение по прошествии некоторого промежутка времени. Если электромотор после сброса все еще находится в состоянии перегрузки, то реле снова сработает.
- Реле с компенсацией температуры внешней среды (ТРВ) качественно работают в большом интервале температур внешней среды.
- Многие тепловые реле оснащены разной степенью проверки фаз. Такие механизмы имеют возможность проверить электродвигатель на разрыв фазы с контактора, дисбаланс. При возникновении аварийной ситуации реле прекращает подачу электрического тока к мотору. Дисбаланс может вызвать опасные колебания тока или напряжения электродвигателя, что способствует его неисправности.
- Функция недогрузки в термореле способна выявить снижение тока в цепи. Это происходит, когда электродвигатель начал работать вхолостую. Такие реле служат для выявления этих различий, по принципу обнаружения перегрузки.
- Тепловые реле со световыми индикаторами – это модель со светодиодами или датчиками сигналов состояния и включения.
Стоимость термореле колеблется в широких пределах от 500 до нескольких тысяч рублей. Это зависит от производителя, характеристик, уровня пропускания тока. Перед приобретением нужно внимательно ознакомиться с описанием. Вся основная интересующая информация находится в паспорте изделия. Там же имеется инструкция по подключению.
Устройство и принцип действия теплового реле
Март 17th, 2016
admin
Тепловое реле – это аппарат защиты, отключающий электродвигатели при длительных перегрузках, а также при обрыве одной из фаз от сети. Тепловое реле, как правило, устанавливается после магнитного пускателя, для того, чтобы обесточить электродвигатель, отключая питание с катушки магнитного пускателя своим размыкающим контактом в цепях управления.
Чаще всего на предприятиях используются тепловые реле серии ТРЛ, РТЛ, РТТ и другие. В этой статье рассмотрим устройство и принцип действия реле РТТ-111 УХЛ 4, которое используется с магнитными пускателями серии ПМЕ.
Технические характеристики теплового реле РТТ-111 УХЛ4
-номинальный ток теплового расцепителя – 10 А;
-напряжение силовой цепи – 220 В, 400 В, 660 В;
-один нормально замкнутый контакт 95-96;
-уставка тока срабатывания от 5,35 А до 7,35 А.
Устройство и принцип действия теплового реле
Тепловые реле устроены аналогично друг другу и состоят из следующих основных деталей. Главным чувствительным элементом является биметаллическая пластина, состоящая из двух металлов: сплавов железа с никелем и латуни, соединенных пайкой и имеющих разные по величине коэффициенты линейного теплового расширения. Этот коэффициент характеризует то, насколько может удлиняться, в данном случае, металлическая пластина при ее нагревании. Для сравнения, коэффициент линейного теплового расширения латуни составляет 18,7 () по сравнению с сплавом железа и никеля 1,5 (), поэтому при нагреве латунь будет быстрее увеличиваться в длине, изгибая, тем самым, биметаллическую пластину в свою сторону. Это свойство и используется в тепловом реле!
1-корпус теплового реле;
2-биметаллическая пластина с нагревательным элементом;
5-пружина замыкающего контакта;
6-винт регулировки пластины температурного компенсатора;
7- пластина температурного компенсатора;
9-эксцентрик с движком уставки тока срабатывания;
10- кнопка возврата реле в рабочее состояние.
По закону Джоуля-Ленца электрический ток, протекающий по проводнику вызывает его нагрев, то есть часть электрической энергии уходит на тепловые потери. И чем больше по значению сила тока в проводника одного и того же поперечного сечения, тем больше он нагревается (перегрузка). Но в тепловых реле биметаллическая пластина нагревается непосредственно от нагревательного элемента-проводника, по которому протекает электрический ток к электродвигателю. Нагретая и изогнутая биметаллическая пластина воздействует через толкатель на исполнительную пластину температурного компенсатора, которая, в свою очередь, выводит из зацепления замкнутые контакты в цепи катушки магнитного пускателя и кнопку включения реле в рабочее состояние(наиболее наглядно изображено на этом рисунке).
Так как на работу теплового реле влияет температура окружающей среды (дополнительный нагрев), то в качестве «противовеса» используется также биметаллическая пластина температурного компенсатора, которая изгибается в противоположную сторону и регулируется специальным винтом.
На эксцентрике или регуляторе тока срабатывания есть шкала с 5 делениями влево(уменьшение тока) и с 5 делениями вправо (увеличение тока) от начальной риски. Ток срабатывания регулируется путем изменения зазора между толкателем и исполнительной пластиной с помощью воздействия движка эксцентрика на пластину температурного компенсатора.
При обрыве питания одной из фаз трехфазного электродвигателя нагрузка переходит на две другие фазы, что приводит к возрастанию в них электрического тока, нагреву обмоток и срабатыванию, в итоге, теплового реле- защита от неполнофазного режима!
Рекомендации:
-при срабатывании теплового реле, необходимо дать время для остывания тепловому расцепителю и обязательно найти причину его срабатывания (произвести тщательный осмотр электродигателя);
— в зависимости от температурных условий эксплуатации электродвигателей советую регулировать эксцентрик влево или вправо;
-периодически производить технический осмотр и ремонт теплового реле во избежание преждевременного выхода из строя!
Критерии выбора
Основным критерием при выборе конкретной модели является соответствие номинальной нагрузки допустимому интервалу самого теплового реле. Для нормальной работы электрической машины вам понадобиться срабатывание при 20 – 30% перегрузке не более, чем в 5 минутный интервал. Величина тока вычисляется по формуле:
Это означает, что допустимый предел регулирования должен включать в себя полученную величину тока срабатывания. Затем, проверьте на время-токовой характеристике (см. рисунок 8), за какой промежуток времени будет срабатывать защита при такой кратности:
Рис. 8. Время-токовая характеристика
В данном случае время будет равно 4 минутам при 20% теплового превышения, что вполне удовлетворяет критериям поставленной задачи.