Srs33.ru

Авто аксессуары
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как управлять мотором постоянного тока

Как управлять мотором постоянного тока

Итак, различают три основных варианта регулирования скоростью:

  1. Изменением напряжения сети. Меняя подводимое питание можно управлять частотой вращения двигателя;
  2. Добавлением пускового реостата в цепь якоря. Регулируя сопротивление, можно уменьшить скорость вращения;
  3. Управлением магнитного потока. Двигатели с электромагнитами дают возможность регулировать поток путем изменения тока возбуждения. Однако нижний предел ν min ограничен насыщением магнитной цепи двигателя, что не позволяет увеличивать в большой степени магнитный поток.

К каждому из вариантов соответствует определённая зависимость механических характеристик.

Методы регулирования применительны к двигателям с различными:

  • типами возбуждения;
  • величиной мощности.

На практике в современных электрических моторах, в связи с недостатками и ограниченности диапазонов, рассмотренные методы не всегда применяются.

Это еще связано с тем, что машины отличаются довольно небольшими КПД, и к тому же не позволяют плавно увеличивать или уменьшать частоту вращения.

Электронные же схемы управления с регуляторами частоты, работающими от аккумуляторной батареи на 12 В, напротив, широко используются. Например, они очень актуальны для управления низковольтными электродвигателями 12 вольт в приборах автоматики, детских игрушках, электрических велосипедах, аккумуляторных детских автомобилях.

2

Принципиальной особенностью метода является то, что ток в цепи якоря и момент, развиваемый электродвигателем, зависят лишь от величины нагрузки на его валу. Регулировка осуществляется с помощью регулятора оборотов электродвигателя.

В течение очень долгого времени тиристорные преобразователи являлись единственным коммерчески доступными регуляторами двигателей. К слову сказать, они по-прежнему самые распространенные на сегодняшний день. Однако с появлением силовых транзисторов стали наиболее популярными регуляторы оборотов двигателя постоянного тока с широтно-импульсной модуляцией. Приведём для примера ниже схему, работающую от источника постоянного тока 12 В.

2

Схема на практике даёт возможность, к примеру, увеличивать либо уменьшать яркость свечения ламп накаливания на 12 вольт.

Последовательно-параллельное управление используется в ситуациях, когда два или более агрегата постоянного тока соединены механически. Схема с последовательным соединением электродвигателей, в которой общее напряжение делится на всех, используется для низкоскоростных приложений. Схема с параллельным соединением машин, имеющих одинаковое напряжение, используется в высокоскоростных применениях.

Малогабаритные коллекторные двигатели Dunkermotoren

Диаметр корпуса – 23…80 мм, мощность – 2,5…240 Вт, номинальный крутящий момент – 10…620 мНм, скорость вращения на холостом ходу – 3 100 … 6 300 об/мин

Ссылки на подробное описание малогабаритных коллекторных двигателей постоянного тока:

Ссылки на сопутствующие компоненты малогабаритного привода:

Ознакомиться с описанием всей продукции компании Dunkermotoren можно по данной ссылке.

Двигатели постоянного тока

Кроме машин переменного напряжения есть электродвигатели, подключающиеся к сети постоянного тока. Число оборотов таких устройств рассчитывается по совершенно другим формулам.

Номинальная скорость вращения

Число оборотов аппарата постоянного тока рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • U – напряжение сети,
  • Rя и Iя – сопротивление и ток якоря,
  • Ce – константа двигателя (зависит от типа электромашины),
  • Ф – магнитное поле статора.

Эти данные соответствуют номинальным значениям параметров электромашины, напряжению на обмотке возбуждения и якоре или вращательному моменту на валу двигателя. Их изменение позволяет регулировать частоту вращения. Определить магнитный поток в реальном двигателе очень сложно, поэтому для расчетов пользуются силой тока, протекающего через обмотку возбуждения или напряжения на якоре.

Формула расчёта числа оборотов двигателя постоянного тока

Формула расчёта числа оборотов двигателя постоянного тока

Число оборотов коллекторных электродвигателей переменного тока можно найти по той же формуле.

Регулировка скорости

Регулировка скорости электродвигателя, работающего от сети постоянного тока, возможна в широких пределах. Она возможна в двух диапазонах:

  1. Вверх от номинальной. Для этого уменьшается магнитный поток при помощи добавочных сопротивлений или регулятора напряжения;
  2. Вниз от номинальной. Для этого необходимо уменьшить напряжение на якоре электромотора или включить последовательно с ним сопротивление. Кроме снижения числа оборотов это делается при запуске электродвигателя.
Читайте так же:
Как регулировать тормоза на электродвигателе

Знание того, по каким формулам вычисляется скорость вращения электродвигателя, необходимо при проектировании и наладке оборудования.

Электродвигатели постоянного тока П

Генераторы и электродвигатели постоянного тока П серии охватывают диапазон мощностей от 0,13 до 200 кВт. Машины этой серии соответствуют ТУ 16.514.001-64.

Электродвигатели постоянного тока П

Машины постоянного тока серии П имеют 11 габаритов. Габарит определяется внешним диаметром якоря.

  • 11 габарит — П11, ПБ11 от 0,13 до 0,7 кВт
  • 12 габарит — П12, ПБ12 от 0,2 до 1 кВт
  • 21 габарит — П21, ПБ21 от 0,2 до 1,5 кВт
  • 22 габарит — П22, ПБ22 от 0,3 до 2,2 кВт
  • 31 габарит — П31, ПБ31 от 0,45 до 3,2 кВт
  • 32 габарит — П32, ПБ32 от 0,7 до 4,5 кВт
  • 41 габарит — П41, ПБ41 от 1 до 6 кВт
  • 42 габарит — П42, ПБ42 от 1,5 до 7,5 кВт
  • 51 габарит — П51, ПБ51 от 2,2 до 11 кВт
  • 52 габарит — П52, ПБ52 от 3,2 до 14 кВт
  • 61 габарит — П61, ПБ61 от 4,5 до 19 кВт
  • 62 габарит — П62, ПБ62 от 5,5 до 25 кВт
  • 71 габарит — П71, ПБ71от 7 до 32 кВт
  • 72 габарит — П72, ПБ72 от 10 до 42 кВт
  • 81 габарит — П81, ПБ81 от 14 до 32 кВт
  • 82 габарит — П82, ПБ82 от 19 до 42 кВт
  • 91 габарит — П91 от 19 до 55 кВт
  • 92 габарит — П92 от 25 до 75 кВт
  • 101 габарит — П101 от 32 до 100 кВт
  • 102 габарит — П102 от 42 до 125 кВт
  • 111 габарит — П111 от 55 до 160 кВт
  • 112 габарит — П112 от 70 до 200 кВт

Электродвигатели постоянного тока П, Общие сведения

Генераторы и электродвигатели постоянного тока П применяются в различных отраслях промышленности. Выпуск машин серии П прекращен, поэтому в новых разработках машины этой серии не применяются.
Машины рассчитаны на продолжительный (S1) режим работы на высоте над уровнем моря до 1000 м при температуре окружающего воздуха от 5 до 40 °С и относительной влажности воздуха до 80% при температуре 25 °С и при более низких температурах без конденсации влаги.

Машины серии П изготавливались со степенями защиты от воздействия окружающей среды IP20 и IP54

Двигатели серии П имеют смешанное возбуждение или параллельное и независимое возбуждение при работе в системе генератор — двигатель.
Ток в цепи якоря при пуске ДПТ не должен превышать 4/ном для ДПТ 1 — 7-го габаритов и 3/ном для ДПТ 8 —11-го габаритов.
Электродвигатели допускают регулирование частоты вращения от номинальной путем изменения тока возбуждения при мощности на валу не выше номинальной.
Регулирование частоты вращения вниз от номинальной осуществляется изменением напряжения на якоре при неизменном токе в обмотке возбуждения. Напряжение на обмотке возбуждения при этом должно соответствовать номинальному напряжению якоря.

Охлаждение и вентиляция электродвигателей П.

Двигатели с независимой вентиляцией допускают регулирование частоты вращения вниз от номинальной (до 100 об/мин) изменением напряжения на якоре при моменте вращения не выше номинального.

Двигатели с самовентиляцией допускают регулирование частоты вращения вниз от номинальной (до 100 об/мин) изменением напряжения на якоре.

Электродвигатели П закрытого исполнения с естественным охлаждением 1 —7-го габаритов допускают регулирование частоты вращения вниз от номинальной (до 10 об/мин) изменением напряжения на якоре при моменте вращения, равном номинальному. Степень искрения на коллекторе машин при любой установившейся нагрузке от 0 до 100% номинальной не должна превышать 11/2 по ГОСТ 183-74.

Читайте так же:
Регулировка педали сцепления авео т300

Степень искрения при перегрузках и в переходных режимах ослабления поля не оговаривается, но коллектор и щетки после работы в этих режимах должны оставаться в состоянии, пригодном для дальнейшей работы без предварительной чистки коллектора. При этом допускаются следы подгара на краях коллекторных пластин и щеток.

Двигатели серии П изготавливались:

1 — 3-го габаритов — с изоляцией класса А (допускается В);

4 —6-го габаритов — с изоляцией класса В;

7-го габарита защищенного и закрытого исполнения — с изоляцией класса F; обмотки возбуждения — с изоляцией класса В;

8-11 -го габаритов — с изоляцией класса F.

Двигатели защищенного исполнения выполнялись: с самовентиляцией (1 —11-й габариты); с независимой вентиляцией с подводом воздуха по трубам (7—11-й габариты); с независимой вентиляцией от пристроенного вентилятора (4—11-й габариты).

Двигатели закрытого исполнения выпускались:

с естественным охлаждением (типа ПБ 1 — 8-го- габаритов);

с воздухоохладителем, пристроенным наверху двигателя (ПР 5 —7-го габаритов).

Генераторы постоянного тока серии П

Генераторы П выпускались в защищенном исполнении со стабильным и регулируемым напряжением. На стабильное напряжение 115, 230 и 460 В изготовлялись со смешанным возбуждением. По особому заказу генераторы выполнялись с параллельным или независимым возбуждением с напряжением обмотки независимого возбуждения НО, 220 или 460 В.

Генераторы с регулируемым напряжением для зарядки аккумуляторных батарей изготовлялись с параллельным возбуждением на напряжения 110/160 и 220/320 В.

Для машин устанавливались следующие показатели надежности и долговечности: наработка до технического осмотра — 2000 ч, полный ресурс — 8000 ч, вероятность безотказной работы за период 2000 ч — 0,7 при доверительной вероятности 0,9.

Где применяются бесколлекторные двигатели

К настоящему времени бесколлекторные двигатели получили широкое распространение, как благодаря своей высокой надёжности, высокой удельной мощности и возможности работать на высокой скорости, так и из-за быстрого развития полупроводниковой техники, сделавшей доступными мощные и компактные контроллеры для управления этими двигателями.

Бесколлекторные двигатели широко применяются в тех системах где их характеристики дают им преимущество перед двигателями других типов. Например, там, где требуется скорость вращения несколько десятков тысяч оборотов в минуту. Если от изделия требуется большой срок службы, а ремонт невозможен или ограничен из-за особенностей эксплуатации изделия, то и тогда бесколлекторный двигатель будет хорошим выбором.

Описание 4 схем регуляторов оборотов электродвигателя

Первая схема

На транзисторе VT1 (однопереходном) реализован генератор пилообразного напряжения (частота 150 Гц). Операционный усилитель DA1 играет роль компаратора, создающего ШИМ на базе транзистора VT2. В результате получается ШИМ регулятор оборотов двигателя.

Изменяют скорость вращения переменным резистором R5, который меняет длительность импульсов. Так как, амплитуда ШИМ импульсов постоянна и равна напряжению питания электродвигателя, то он никогда не останавливается даже при очень малой скорости вращения.

Вторая схема

Она схожа с предыдущей, но в роли задающего генератора применен операционный усилитель DA1 (К140УД7).

Этот ОУ функционирует как генератор напряжения вырабатывающий импульсы треугольной формы и имеющий частоту 500 Гц. Переменным резистором R7 выставляют частоту вращения электродвигателя.

Третья схема

Она своеобразная, построена на она на популярном таймере NE555. Задающий генератор действует с частотой 500 Гц. Ширина импульсов, а следовательно, и частоту вращения двигателя возможно изменять от 2 % до 98 %.

Слабым местом во всех вышеприведенных схемах является, то что в них нет элемента стабилизации частоты вращения при увеличении или уменьшении нагрузки на валу двигателя постоянного тока. Разрешить эту проблему можно с помощью следующей схемы:

Читайте так же:
Порядок регулировка клапанов мицубиси лансер

Как и большинство похожих регуляторов, схема этого регулятора имеет задающий генератор напряжения, вырабатывающий импульсы треугольной формы, частота которых 2 кГц. Вся специфика схемы — присутствие положительной обратной связи (ПОС) сквозь элементы R12,R11,VD1,C2, DA1.4, стабилизирующей частоту вращения вала электродвигателя при увеличении или уменьшении нагрузки.

При налаживании схемы с определенным двигателем, сопротивлением R12 выбирают такую глубину ПОС, при которой еще не случаются автоколебания частоты вращения при изменении нагрузки.

Никого за штурвалом: когда самолеты станут беспилотными и насколько это опасно

Беспилотные средства передвижения становятся все более распространенными. Во всяком случае, когда речь идет об автомобилях, но не о самолетах. «Хайтек» рассказывает, на каком этапе находится развитие беспилотных самолетов и возможно ли их доминирование в авиации будущего.

Читайте «Хайтек» в

На заре авиации от пилота требовалось постоянно находиться в состоянии повышенной готовности. Важно было сосредоточиться не только на управлении транспортного средства, но и на наблюдении за ситуацией внутри и вокруг самолета. Все это приводило к сильной усталости пилотов — физической и моральной — на протяжении всего полета.

Когда полет небольшой, это не такая большая проблема. Но с развитием технологий и глобализацией, увеличивалась и дальность и время полетов. При всем желании человеку тяжело сохранять концентрацию в течение длительных периодов времени. Потенциально это очень опасно. Усталый человек будет ошибаться как в наблюдениях, так и в суждениях, что может закончиться катастрофой.

Системы автопилота: тогда и сейчас

Именно по этой причине функция автопилота появилась удивительно рано. Тяжело поверить, но один из первых самолетов, который оснастили такой системой (хотя и элементарной по современным меркам), построила компания Sperry Corporation в начале 1910-х годов.

Эта функция включала подключение гироскопического указателя курса, также базовая настройка позволяла летательному аппарату двигаться прямо и горизонтально по предварительно установленному пеленгу компаса в течение длительных периодов времени без полного внимания пилота. Такое простое устройство избавило его от большой нагрузки.

Системы автопилота со временем становились все более сложными, и в 1930-х годах Королевское авиастроительное учреждение в Великобритании разработало более совершенную систему. Система «Помощник пилота» использовала гироскопы с пневматическим вращением для фактического управления полетом.

В дальнейшем системы поставлялись с улучшенными алгоритмами управления, сервомеханизмами и даже средствами радионавигации, что позволило самолетам автономно летать ночью или в плохую погоду. Уже в 1947 году самолет C-53 ВВС США взлетал, пересекал Атлантику и приземлялся, все это — полностью под контролем автопилота.

Сейчас крупные самолеты и воздушные судна с 20 пассажирами и более по закону должны иметь встроенную систему автоматизации. Ее уровень различается, но большинство из них обеспечивает так называемое трехосное управление тангажом, креном и рысканием аппарата .

Автопилот не такой «автоматический», как кажется. Нет робота, который сидит в кресле пилота и жмет кнопки, пока настоящий пилот спит. Это просто система управления полетом, которая позволяет пилоту управлять самолетом без постоянного ручного управления. По сути, он позволяет пилоту летать из Нью-Йорка в Лос-Анджелес, не нажимая на рычаги управления в течение шести часов подряд.

Современная автоматическая система управления полетом (AFCS, Automatic Flight Control System) состоит из трех основных частей: компьютера, который наблюдает за полетом, нескольких высокоскоростных процессоров и ряда датчиков, размещенных на разных частях самолета. Датчики собирают данные со всего самолета и отправляют их процессорам, которые, в свою очередь, сообщают компьютеру, что к чему.

Читайте так же:
Мотокультиватор крот регулировка карбюратора к60в

Автопилот активируется через некоторое время после взлета и выключается перед посадкой. Разрешение этого программного обеспечения может отличаться от самолета к самолету.

Автопилот может посадить самолет в соответствии с необходимыми командами. Это называется системой автоматической посадки. Если самолет пытается приземлиться в сложных условиях, при наличии тумана, полностью закрывающего прицел, посадка самолета выполняется в соответствии с определенными параметрами безопасности с помощью системы ILS (Instrument Landing System). В таких случаях автопилот, действуя синхронно с другими системами самолета, обеспечивает посадку под контролем кабины экипажа.

Также системы помогают самолету набирать высоту, поддерживать круиз-контроль и горизонтальный полет, а также управлять снижением, заходом на посадку и заключительными этапами посадки. Руление перед взлетом, фактическая посадка и руление после приземления по-прежнему являются прерогативой пилотов-людей. Системы автопилота также отключаются во время экстремальной турбулентности.

По сути, успех автопилота зависит от знаний реального пилота-человека.

В 2020 году Airbus объявила, что успешно разработала и испытала полностью автономную взлетную систему, для промышленности новость была весьма новаторской. Используемая технология отличается от существующих систем посадки по приборам, которые распространены на современных авиалайнерах. Система распознает изображения, чтобы удерживать самолет на центральной линии взлетно-посадочной полосы, регулировать тангаж, скорость и, наконец, поднимает испытательный самолет Airbus в воздух. Это важный шаг к тому, чтобы в недалеком будущем сделать самолет полностью автономным.

Пилоты будут не нужны?

С учетом высокого уровня сложности современных автопилотов, можно подумать, что пилоты не нужны вовсе. Если самолет теоретически может летать сам, зачем они нужны? Оказывается, хотя большую часть работы можно делегировать автопилоту, присутствие человека по-прежнему очень важно. На самом деле, вряд ли это изменится в ближайшее время.

Одна из главных причин — это общее настроение пассажиров самолета и общественности в целом. Признаете вы это или нет, есть что-то очень обнадеживающее в том, что живой разумный человек управляет таким огромным транспортом в воздухе (по крайней мере, пока). Большинство людей не хотят доверять контроль над чем-то, что теоретически может убить их, полностью в руки машины

Интересно, однако, что недавние исследования показывают, что настроение общественности по этому поводу меняется. По крайней мере, в отношении некоторых транспортных средств. Опросы общественного мнения, проведенные еще в 2019 году, показали, что 7 из 10 потребителей считают, что автономные автомобили более безопасны, чем те, которыми управляет человек. Опрос провела система ANSYS , и в нем приняли участие более 22 000 человек в странах Бенилюкса, Китае, Франции, Германии, Индии, Италии, Японии, Испании, Швеции, Великобритании и США. Конечно, этот опрос был в основном посвящен беспилотным автомобилям, но, похоже, люди готовы доверять транспортным средствам, которые обслуживаются компьютером, а не людьми.

Когда дело доходит до беспилотных самолетов будущего, большинство респондентов не полностью сопротивлялось этой идее, но предпочли бы подождать, пока технология станет более продвинутой.

Еще одна причина, почему пилоты нужны, состоит в том, что при определенных обстоятельствах люди сами становятся лучшими «машинами для принятия решений», чем компьютер. Несмотря на всю его сложность, он все равно не сравнится со сложным компьютером в черепе человека. Наш мозг может воспринимать огромное количество информации одновременно, принимать быстрые решения и импровизировать на лету. Такую гибкость невероятно сложно воспроизвести на машине, если вообще возможно.

Более того, учитывая крайне хаотичную среду полета, зачастую могут возникать нестандартные ситуации, в которых регулируемая и управляемая машина не способна принимать решения.

Читайте так же:
Как регулировать обороты электродвигателя вентилятора

Например, в 2010 году самолет Qantas с 450 пассажирами получил серьезную неисправность в полете. Из-за выхода из строя ротора двигателя его части разлетелись по всему самолету, повредив несколько критически важных систем самолета, в том числе шасси. Бортовая система управления полетом была перегружена аварийными ошибками и сообщениями, с которыми невозможно было справиться одновременно. Пилоты за штурвалом (а также эксперты вне дежурства, которые были среди пассажиров) смогли импровизировать и успешно посадить самолет. Хотя вполне возможно, что система автопилота нашла способ сделать то же самое, именно быстрое мышление и способность импровизировать спасли в тот день сотни жизней.

Так что же безопаснее?

На сегодняшний день полет — один из самых безопасных способов путешествовать. Примерно с 1970 года количество авиационных происшествий с участием коммерческих самолетов (самолетов с более чем 19 пассажирами на борту) постепенно снижалось. К 2019 году количество несчастных случаев со смертельным исходом на миллион рейсов снизилось в 12 раз по сравнению с 1970 годом.

Причина — совершенствование технологий и более строгое регулирование авиационной промышленности, повышение надежности и возможностей автопилота. Судя по статистике за 2019 год, который является последним «нормальным» годом для оценки статистики полетов (год перед пандемией), шансы умереть в авиакатастрофе практически равняются нулю.

При этом, по данным Национального совета безопасности США (одна из стран, где на душу населения приходится больше всего автомобилей), за последние 10 лет уровень смертности при использовании легковых автомобилей был в 1 606 раз выше, чем при полете на самолете. Почему же автомобили с автопилотом есть, а самолетам все еще нужны пилоты?

Автономные технологии в транспортных средствах, хотя и впечатляют, все еще находятся в зачаточном состоянии и не застрахованы от ошибок. Однако ситуация меняется, поскольку машинное обучение становится все более важным компонентом таких систем.

Насколько мы близки к полностью автономному полету?

Как только системы автопилота будут разработаны, протестированы и пользоваться доверием таких организаций, как FAA , роль пилотов-людей со временем будет сокращаться.

Тем не менее, мы, вероятно, никогда не увидим будущее, когда в кабине коммерческого самолета не будет обученного человека. Даже если предположить, что все технические проблемы устранят и автопилоты смогут адаптироваться к ситуациям как люди, пассажиры, вероятно, будут чувствовать себя в большей безопасности, зная, что в кабине есть человек, который якобы контролирует ситуацию.

Но когда речь идет о дронах доставки, военных дронах и, возможно, даже военных самолетов, беспилотное, полностью автономное будущее, вероятно, неизбежно.

Читать далее

ANSYS — универсальная программная система конечно-элементного анализа, существующая и развивающаяся на протяжении последних 30 лет, является довольно популярной у специалистов в сфере автоматизированных инженерных расчётов и КЭ решения линейных и нелинейных, стационарных и нестационарных пространственных задач механики.

FAA (The Federal Aviation Administration) — Федеральное управление гражданской авиации США.

Крен (Roll), Тангаж (Pitch), Рыскание (Курс, Yaw) — три угла поворота, соответствующие трём углам Эйлера, которые задают ориентацию аппарата относительно нормальной системы координат (относительно его центра инерции по трём осям).

Сервомеханизм —обычный двигатель постоянного тока со встроенными сервоконтроллерами и коробками передач. В основе его работы лежит система обратной связи, в которую вводится выходной сигнал, несущий информацию о позиции, скорости, ускорении или смещении. Данные передаются корректирующим элементом и усилителем в исполнительный агрегат — привод или электродвигатель.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector