Srs33.ru

Авто аксессуары
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как понизить напряжение

Как понизить напряжение?

За счет наличия большого количества международных стандартов и технических решений питание электронных устройств может осуществляться от различных номиналов. Но, далеко не все они присутствуют в свободном доступе, поэтому для получения нужной разности потенциалов придется использовать преобразователь. Такие устройства можно найти как в свободной продаже, так и собрать самостоятельно из радиодеталей.

В связи с наличием двух родов электрического тока: постоянного и переменного, вопрос, как понизить напряжение, следует рассматривать в ключе каждого из них отдельно.

Он состоит из четырёх оснований и шести плоскостей. Часть из фанеры 4 мм, часть из ДВП 4 мм. Всё это добро держится на соплях и маленьких гвоздиках, винтиках, болтиках и клею ПВА – достаточно надежно.

Плата блока питания закреплена на четырёх деревянных стойках, которые привинчены винтиками +термоклей. Для того чтобы можно было удобно разбирать корпус блока питания боковая часть крепится с помощью болтов с гайками.

Вся лишняя мощность при регулировании рассеивается на мощном биполярном транзисторе, который и нужно активно охлаждать, чем занимается вентилятор, который к тому же также чутка понижает температуру самого трансформатора.

Понижаем постоянное напряжение

При конструировании электроники часто возникает необходимость понижения напряжения имеющегося блока питания. Мы также рассмотрим несколько типовых ситуаций.

Если вы работаете с микроконтроллерами – могли заметить, что некоторые из них работают от 3 Вольт. Найти соответствующие блоки питания бывает непросто, поэтому можно использовать зарядное устройство для телефона. Тогда вам нужно понизить его выход с 5 до 3 Вольт (3,3В). Это можно сделать, если опустить выходное напряжение блока питания путём замены стабилитрона в цепи обратной связи. Вы можете добиться любого напряжения как повышенного, так и пониженного – установив стабилитрон нужного номинала. Определить его можно методом подбора, на схеме ниже он выделен красным эллипсом.

Читайте так же:
Регулировка сцепления автомобиля маз 5551

Схема зарядного устройства

А на плате он выглядит следующим образом:

Стабилитрон на плате

На следующем видео автор демонстрирует такую переделку, только не на понижение, а на повышение выходных параметров.

На зарядных устройствах более совершенной конструкции используется регулируемый стабилитрон TL431, тогда регулировка возможна заменой резистора или соотношением пары резисторов, в зависимости от схемотехники. На схеме ниже они обозначены красным.

TL431 на схеме

Кроме замены стабилитрона на плате ЗУ, можно опустить напряжение с помощью резистора и стабилитрона – это называется параметрический стабилизатор.

Параметрический стабилизатор

Еще один вариант – установить в разрыв цепи цепочку из диодов. На каждом кремниевом диоде упадёт около 0,6-0,7 Вольт. Так опустить напряжение до нужного уровня можно, набрав нужное количество диодов.

Часто возникает необходимость подключить устройство к бортовой сети автомобиля, оно колеблется от 12 до 14,3-14,7 Вольт. Чтобы понизить напряжение постоянного тока с 12 до 9 Вольт можно использовать линейный стабилизатор типа L7809, а, чтобы опустить с 12 до 5 Вольт – используйте L7805. Или их аналоги ams1117-5.0 или ams1117-9.0 или amsr-7805-nz и подобные на любое нужное напряжение. Схема подключения таких стабилизаторов изображена ниже.

ИМС стабилизатор

Для питания более мощных потребителей удобно использовать импульсные преобразователи для понижения и регулировки напряжения от источника питания. Примером таких устройств являются платы на LM2596, а в англо-язычных интернет-магазинах их можно найти по запросам «DC-DC step down» или «DC-DC buck converter».

LM2596

Напоследок рекомендуем просмотреть видео, на которых наглядно рассмотрены способы понижения напряжения:

Вот и все наиболее рациональные варианты, позволяющие понизить напряжение постоянного и переменного тока. Надеемся, предоставленная информация была для вас полезной и интересной!

Применимость

Делитель напряжения подходит для получения необходимого заниженного напряжения в случаях, когда подключенная нагрузка потребляет небольшой ток (доли или единицы миллиампер). Примером подходящего использования является считывание напряжения аналоговым входом микроконтроллера, управление базой/затвором транзистора.

Делитель не подходит для подачи напряжения на мощных потребителей вроде моторов или светодиодных лент.

Читайте так же:
Регулировка тока сварочной дуги

Чем меньшие номиналы выбраны для делящих резисторов, тем больше энергии расходуется впустую и тем выше нагрузка на сами резисторы. Чем номиналы больше, тем больше и дополнительное (нежелательное) падение напряжения, провоцируемое самой нагрузкой.

Если потребление тока нагрузкой неравномерно во времени, Vout также будет неравномерным.

Замена аналоговой регулировки на цифровую в лабораторном блоке питания HY3005D

Несколько лет назад приобрел блок питания Mastech HY3005D. Не так давно возникли проблемы с регулировкой напряжения — истерлось графитовое покрытие реостатов и выставить необходимое напряжение стало сложной задачей. Подходящих реостатов не нашлось, и я решил не покупать аналогичные, а изменить способ регулировки.
Уровень выходного напряжения и тока задается опорным напряжением, подаваемым на операционные усилители. Таким образом можно полностью избавиться от потенциометров заменив их на ЦАП способный выдавать напряжение в нужном диапазоне.
В каталоге microchip я не смог подобрать подходящего микроконтроллера, имеющего два ЦАП на борту, а внешние ЦАП имеют не малый ценник и слишком много лишнего функционала. Поэтому приобрел сдвиговые регистры 74HC595 и резисторы для матрицы R2R. Микроконтроллер PIC16F1829 уже был в наличии.
Для возможности вернуться к первоначальной схеме все изменения сведены к минимуму — замене блока регулировки выполненного на отдельной плате.

Описание работы

В основе схемы лежит микроконтроллер PIC16F1829 работающий на частоте 32МГц. Тактовая частоста задается встроенным тактовым генератором, согласно даташиту он не слишком точный, но для данной схемы — это не критично. Плюсом данного МК является наличие подтягивающих резисторов на всех цифровых входах и два MSSP модуля реализующих SPI. Все 18 логических вывода микроконтроллера использованы.
На четырех сдвиговых регистрах 74HC595 и R2R матрицах реализованы два ЦАП по 16 бит. К плюсам данного регистра можно отнести наличие раздельного сдвигового регистра и регистра хранения. Это позволяет записывать данные в регистр, не сбивая текущие выходные значения. Матрица R2R собрана на резисторах с погрешностью 1%. Стоит заметить, что выборочные замеры показали погрешность не более 10 Ом. Изначально планировалось использовать 3 регистра, но при разводке платы мне показалось это не удачным решением, к тому же требовалось складывать полубайты.
Встроенные в МК подтягивающие резисторы активированы на всех входах и позволяют упростить схему. Все выходы с энкодеров подключены напрямую к выводам МК, всего 4 энкодера у каждого по два вывода для самого датчика поворота и один для встроенной кнопки. Итого 12 выводов МК используется для обработки входных данных. Дребезг контактов сглаживается емкостью 100нФ. После изменения значений 16-битных буферов тока и напряжения в соответствии с входными данными от энкодеров значения передаются в сдвиговые регистры 74HC595 по SPI. Для сокращения времени передачи данных используется два SPI-модуля что позволяет передавать данные одновременно для тока и напряжения. После того как данные переданы на регистр подается команда переноса данных из сдвигового буфера в буфер хранения. Выходы регистра подключены к матрице R2R выполняющую роль делителя для ЦАП. Выходное напряжение с матрицы передается на входы операционных усилителей.
Кнопки, встроенные в энкодеры, устанавливают значения на минимум (кнопка энкодера плавной регулировки) или максимум (кнопка энкодера грубой регулировки), соответственно, для тока или напряжения.

Читайте так же:
Регулировка клапанов мтз 80 д 240 зазор

Схема

В интернете не нашел схему, полностью совпадающую с моей, поэтому взял по первой ссылке. Внес исправления по выявленным несоответствиям и затем добавил свои изменения. Схему блока регулировки чертил в TinyCAD — скачать файл HY3005D-regulator.dsn.

Итоговая схема после доработки

Выносной блок с регулировкой (выделен красным) вынес в отдельную схему.

К разъему J3 подключается цифровой вольтметр с дисплеем на лицевой панели (его нет на схемах).

Использованные компоненты

  • U1: микроконтроллер PIC16F1829I/ML (QFN)
  • U2 — U5: сдвиговый регистр 74HC595BQ (DHVQFN16 или SOT-763)
  • U6: линейный регулятор напряжения AMS1117 на 5В (SOT-223)
  • RE1 — RE4: механический накапливающий датчик угла поворота EC11
  • R1, R2 и матрицы R2R: резисторы 1 и 2 кОм (SMD 0402)
  • C1 — C12, C14-C17: керамические конденсаторы GRM21BR71E104KA01L 100нФ (SMD 0805)
  • C13: танталовый конденсатор 22мкФ 16В (тив B)
  • D1, D2: светодиоды индикации напряжения/тока на лицевой панели

Плата

Плату разводил в Sprint Layout 6 — скачать файл HY3005D-regulator.lay6. К сожалению, оригинал, на котором я сделал свой вариант, не сохранился, в формате lay6 уже с исправлениями, выявленными в ходе сборки:

  1. В разрыв подключения энкодера плавной регулировки тока добавил перемычки рядом с интерфейсом для прошивки, т.к. емкости, фильтрующие дребезг контактов, не позволяли прошивать контроллер
  2. Добавил недостающие перемычки для земли между сторонами
  3. Переместил стабилизирующую сборку на 5В на другую сторону для уменьшения сквозных перемычек
  4. Добавлены сглаживающие конденсаторы на линии питания (обсуждение)


Изготавливал с использованием пленочного фоторезиста. Долго мучился с мелкой разводкой регистров. В последнем варианте были небольшие огрехи, которые пришлось зачищать после травления. Но в целом плата удалась. Здесь еще не хватает двух перемычек для соединения земли на лицевой и тыльной сторонах.

Читайте так же:
Как отрегулировать карбюратор бензопилы эхо 3500



В качестве перемычек использованы три резистора номиналом 0 Ом в корпусе SMD 0805.

В левой части сам блок питания. В правой — лицевая панель лицом в низ. Зеленый провод из левого верхнего угла в правый нижний — дополнительное питание 12В.

Как видно, изменения минимальны, все старые разъемы остались без изменений. Пришлось добавить отдельно питание, т.к. единственное напряжение, приходящее на плату регулировки 2.5В для родного делителя не подходит. Если на основной плате блока питания убрать стабилитрон на 2.5В (V5A) и поставить перемычку в место резистора (R1A), можно обойтись и без дополнительного подведения 12В питания.

Прошивка

Код на Си для компилятора XC8. Прошивал оригинальным PICkit 3.

Для минимальных значений VoltageMin и CurrentMin выставлена 1, т.к. при 0 в буфере регулировка перестает работать, пока не понял где проблема. Рейты *Rate* подбирал кратные и наиболее удобные на мой взгляд. Для метода SendData не делал передачу переменных в качестве параметров для экономии машинных команд и памяти. Режим прошивки с низким напряжением (LVP) должен быть выключен, иначе RA3 не будет работать как цифровой вход. Прерывания не используются, метод tc_int присутствует в коде для того чтобы компилятор поместил основной блок в начало ППЗУ.
Для прошивки достаточно снять перемычки, подключить PICkit 3 (или другой программатор) и выполнить прошивку. В первой версии не было перемычек на CLK и DAT, поэтому мне пришлось выпаять сглаживающие конденсаторы, прошить и потом впаять их обратно.
UPD: После установки дополнительных емкостей на линии питания проблема с выходом из нулевого положения счетчика исчезла. Так же пришлось поменять направление вращения. Судя по всему, шум от выпрямителя AMS1117 мешал корректно распознавать состояние энкодеров. Дополнительно добавил установку стартовых значений, теперь напряжение по умолчанию выставляется на 5 вольт (ток по-прежнему на максимум). Перед первой отправкой данных в регистры вставлена задержка в 50мс (значение задержки взял с большим запасом) для ожидания инициализации модулей SPI.

Читайте так же:
Неисправности регулировки оборотов в болгарке

Характеристики выходного напряжения


Расчетные значения напряжений получены по формуле (U*D)/(2^K), где
U — напряжение на выходе регистра с учетом делителей в основной схеме (для ЦАП тока — 4950мВ, для ЦАП напряжения — 3550мВ);
D — десятичное значение счетчика ЦАП;
K — разрядность ЦАП (16 бит)

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector